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Introduction

• Input models represent the uncertainty in real world.

• Input models provide the driving force for a simulation.
• Queueing system: Distributions of interarrival time and service

time.
• Supply chain: Distributions of demand and lead time.
• Financial risk management: Distributions of asset return.

• The quality of outputs is no better than the quality of inputs.
• “Garbage in, garbage out.”

• “All models are wrong, but some are useful.” – George Box.
• There is no “true” model for any stochastic input.
• The best we can do is to obtain an approximation that yields

reasonable and useful results.
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Introduction

• Fundamental requirements for an input model:
• can capture the physical properties of the system;
• can be easily tuned to the situation at hand;
• can be efficiently generated with certain random variate

generation technique.

• Input modeling is sometimes more of an art than an
engineering.
• It nearly always requires the analysts to use their judgment as

well as to apply appropriate statistical tools.
• Since there is no “true” model, it is sensible to run the

simulation with several plausible input models to see if the
conclusions are robust or highly sensitive to the choices.
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Introduction

• Typical steps for input modeling.

1 Collect data from the real system.

2 Identify a probability distribution family to represent the data.
– based on physical characteristics of the process (consult domain experts
for structural knowledge).
– based on graphical examination of the data (examine the “shape” via,
e.g., histogram).

3 Fit the distribution to the data (determine values of the
parameters).
– method of moments (MoM).
– maximum likelihood estimation (MLE).

4 Evaluate the chosen distribution and parameters for goodness
of fit.
– graphical methods: histogram, quantile-quantile (Q-Q) plot.
– statistical tests: chi-square (χ2) test, Kolmogorov-Smirnov (K-S) test.

5 If the fit is not good, select another candidate and go to Step
3, or use an empirical distribution.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 5 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Introduction

• Typical steps for input modeling.

1 Collect data from the real system.

2 Identify a probability distribution family to represent the data.
– based on physical characteristics of the process (consult domain experts
for structural knowledge).
– based on graphical examination of the data (examine the “shape” via,
e.g., histogram).

3 Fit the distribution to the data (determine values of the
parameters).
– method of moments (MoM).
– maximum likelihood estimation (MLE).

4 Evaluate the chosen distribution and parameters for goodness
of fit.
– graphical methods: histogram, quantile-quantile (Q-Q) plot.
– statistical tests: chi-square (χ2) test, Kolmogorov-Smirnov (K-S) test.

5 If the fit is not good, select another candidate and go to Step
3, or use an empirical distribution.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 5 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Introduction

• Typical steps for input modeling.

1 Collect data from the real system.

2 Identify a probability distribution family to represent the data.
– based on physical characteristics of the process (consult domain experts
for structural knowledge).
– based on graphical examination of the data (examine the “shape” via,
e.g., histogram).

3 Fit the distribution to the data (determine values of the
parameters).
– method of moments (MoM).
– maximum likelihood estimation (MLE).

4 Evaluate the chosen distribution and parameters for goodness
of fit.
– graphical methods: histogram, quantile-quantile (Q-Q) plot.
– statistical tests: chi-square (χ2) test, Kolmogorov-Smirnov (K-S) test.

5 If the fit is not good, select another candidate and go to Step
3, or use an empirical distribution.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 5 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Introduction

• Typical steps for input modeling.

1 Collect data from the real system.

2 Identify a probability distribution family to represent the data.
– based on physical characteristics of the process (consult domain experts
for structural knowledge).
– based on graphical examination of the data (examine the “shape” via,
e.g., histogram).

3 Fit the distribution to the data (determine values of the
parameters).
– method of moments (MoM).
– maximum likelihood estimation (MLE).

4 Evaluate the chosen distribution and parameters for goodness
of fit.
– graphical methods: histogram, quantile-quantile (Q-Q) plot.
– statistical tests: chi-square (χ2) test, Kolmogorov-Smirnov (K-S) test.

5 If the fit is not good, select another candidate and go to Step
3, or use an empirical distribution.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 5 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Introduction

• Typical steps for input modeling.

1 Collect data from the real system.

2 Identify a probability distribution family to represent the data.
– based on physical characteristics of the process (consult domain experts
for structural knowledge).
– based on graphical examination of the data (examine the “shape” via,
e.g., histogram).

3 Fit the distribution to the data (determine values of the
parameters).
– method of moments (MoM).
– maximum likelihood estimation (MLE).

4 Evaluate the chosen distribution and parameters for goodness
of fit.
– graphical methods: histogram, quantile-quantile (Q-Q) plot.
– statistical tests: chi-square (χ2) test, Kolmogorov-Smirnov (K-S) test.

5 If the fit is not good, select another candidate and go to Step
3, or use an empirical distribution.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 5 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Introduction

• Typical steps for input modeling.

1 Collect data from the real system.

2 Identify a probability distribution family to represent the data.
– based on physical characteristics of the process (consult domain experts
for structural knowledge).
– based on graphical examination of the data (examine the “shape” via,
e.g., histogram).

3 Fit the distribution to the data (determine values of the
parameters).
– method of moments (MoM).
– maximum likelihood estimation (MLE).

4 Evaluate the chosen distribution and parameters for goodness
of fit.
– graphical methods: histogram, quantile-quantile (Q-Q) plot.
– statistical tests: chi-square (χ2) test, Kolmogorov-Smirnov (K-S) test.

5 If the fit is not good, select another candidate and go to Step
3, or use an empirical distribution.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 5 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


1 Introduction

2 Data Collection

3 Identifying Distribution
I Physical Basis of Distributions
I Histogram and Bar Chart

4 Distribution Fitting
I Method of Moments
I A Simple Variation of MoM
I Maximum Likelihood Estimation

5 Goodness of Fit
I Graphical Methods
I Statistical Tests
I Remarks

6 An Illustrative Example

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 6 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Data Collection

• People often have the false impression that data are readily
available, but it is one of the most challenging task in solving
a real problem.

• Never trust data blindly!
• A common mistake is to simply throw data into a software and

ask for a “best” fit model.
• Always take into account under what context (e.g., time,

potential influence of other factors) the data was collected.
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Data Collection

• The collected data can be
• stale (out of date);
• “dirty” (containing errors);
• unexpected;
• time-varying;
• dependent.

• Sometimes the effort or cost to transform data into a usable
form, or “clean” data, can be as significant as that required to
obtain them.
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Data Collection

• Suggestions that may enhance and facilitate data collection.

• Plan ahead: begin by a practice or pre-observing session,
watch for unusual circumstances.

• Analyze the data as they are being collected: check adequacy.

• Combine homogeneous data sets, e.g., successive time periods,
the same time period on successive days.

• Be aware of data censoring (删失): some values exist but are
not observed.
– Example: customer may quit the queue due to excessive long waiting.
How to find out the patience limit for those who don’t experience long
waiting and receive service?

• Check for autocorrelation.

• Collect input data, not output data.
– Example: customer arrival times and service times are input, whereas
waiting times are output.
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Identifying Distribution

• When data are collected, we next want to select a family of
input distributions.
• Assumption: Data are iid!

• A family of distributions can be selected on the basis of
• the context of the input variable;
• the shape of the histogram.

• Do not ignore the physical characteristics of the process when
selecting distributions.
• Is the process naturally discrete or continuous valued?
• Is it bounded or is there no natural bound?

• There are literally hundreds of probability distributions that
have been created; many were created with some specific
physical process in mind.
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Identifying Distribution I Physical Basis of Distributions

• Discrete Distributions:
• Bernoulli: Models the outcome of a trial, where each trial has

a probability p of success.

• binomial: Models the number of successes in n trials, when
the trials are independent with common success probability p.
– Example: the number of defective computer chips found in n chips.

• negative binomial: Models the number of trials required to
achieve r successes (r = 1 =⇒ geometric).
– Example: the number of computer chips that we must inspect to find 4
defective chips.

• Poisson: Models the number of independent events that occur
in a fixed amount of time or space.
– Example 1: the number of customers that arrive to a store during 1
hour.
– Example 2: the number of defects found in 30 square meters of sheet
metal.

• empirical distribution: Often used when no theoretical
distribution seems appropriate.
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– Example: the number of defective computer chips found in n chips.

• negative binomial: Models the number of trials required to
achieve r successes (r = 1 =⇒ geometric).
– Example: the number of computer chips that we must inspect to find 4
defective chips.

• Poisson: Models the number of independent events that occur
in a fixed amount of time or space.
– Example 1: the number of customers that arrive to a store during 1
hour.
– Example 2: the number of defects found in 30 square meters of sheet
metal.

• empirical distribution: Often used when no theoretical
distribution seems appropriate.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 12 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Identifying Distribution I Physical Basis of Distributions

• Discrete Distributions:
• Bernoulli: Models the outcome of a trial, where each trial has

a probability p of success.

• binomial: Models the number of successes in n trials, when
the trials are independent with common success probability p.
– Example: the number of defective computer chips found in n chips.

• negative binomial: Models the number of trials required to
achieve r successes (r = 1 =⇒ geometric).
– Example: the number of computer chips that we must inspect to find 4
defective chips.

• Poisson: Models the number of independent events that occur
in a fixed amount of time or space.
– Example 1: the number of customers that arrive to a store during 1
hour.
– Example 2: the number of defects found in 30 square meters of sheet
metal.

• empirical distribution: Often used when no theoretical
distribution seems appropriate.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 12 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Identifying Distribution I Physical Basis of Distributions

• Discrete Distributions:
• Bernoulli: Models the outcome of a trial, where each trial has

a probability p of success.

• binomial: Models the number of successes in n trials, when
the trials are independent with common success probability p.
– Example: the number of defective computer chips found in n chips.

• negative binomial: Models the number of trials required to
achieve r successes (r = 1 =⇒ geometric).
– Example: the number of computer chips that we must inspect to find 4
defective chips.

• Poisson: Models the number of independent events that occur
in a fixed amount of time or space.
– Example 1: the number of customers that arrive to a store during 1
hour.
– Example 2: the number of defects found in 30 square meters of sheet
metal.

• empirical distribution: Often used when no theoretical
distribution seems appropriate.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 12 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Identifying Distribution I Physical Basis of Distributions

• Discrete Distributions:
• Bernoulli: Models the outcome of a trial, where each trial has

a probability p of success.

• binomial: Models the number of successes in n trials, when
the trials are independent with common success probability p.
– Example: the number of defective computer chips found in n chips.

• negative binomial: Models the number of trials required to
achieve r successes (r = 1 =⇒ geometric).
– Example: the number of computer chips that we must inspect to find 4
defective chips.

• Poisson: Models the number of independent events that occur
in a fixed amount of time or space.
– Example 1: the number of customers that arrive to a store during 1
hour.
– Example 2: the number of defects found in 30 square meters of sheet
metal.

• empirical distribution: Often used when no theoretical
distribution seems appropriate.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 12 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Identifying Distribution I Physical Basis of Distributions

• The CDF of the empirical distribution (empirical CDF) is
defined as

Fn(x) =
number of points ≤ x

n
=

1

n

n∑
i=1

1{xi≤x}.

Empirical CDF of n = 100 data points from N (0, 1)
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• The empirical CDF is a right-continuous step function.
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Identifying Distribution I Physical Basis of Distributions

• Continuous Distributions:
• uniform: Models the situation that an outcome is equally

likely for every value in the range [a, b].

• normal: Models the distribution of a process that can be
thought of as the sum of a number of component processes.
– Example: the time to assemble a product that is the sum of the times
required for each assembly operation.
– Caution: normal distribution admits negative values, which could be
impossible for some process.

• exponential: Models the time between independent events, or
a process time that is memoryless.
– Example 1: the times between the arrivals from a large population of
potential customers who act independently.
– Example 2: the time to failure for a system that is memoryless or has
constant failure rate over time.
– Note: if the time between events is exponential, then the number of
events in a fixed period of time is Poisson.

• Weibull: Models the time to failure for components.
– Note: the failure rate can be increasing, decreasing, or constant (reduce
to exponential distribution).
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Identifying Distribution I Physical Basis of Distributions

• Continuous Distributions:

• Erlang: Models the time that can be viewed as the sum of
several exponentially distributed times.
– Example: a computer network fails when a computer and two backup
computers fail, and each has exponentially distributed time to failure.
– Note: Erlang is a special case of gamma.

• gamma: An extremely flexible distribution used to model
nonnegative random variables.
– Note: can be shifted away from 0 by adding a constant.

• beta: An extremely flexible distribution used to model
bounded (originally in [0, 1]) random variables.
– Note: can be shifted away from 0 by adding a constant; can cover a
range different from [0, 1] by multiplying by a constant.

• triangular: Models a process for which only the minimum,
most likely, and maximum values of the distribution are known.
– Example: only the minimum, most likely, and maximum time required
to test a product are known.
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Identifying Distribution I Histogram and Bar Chart

• Useful in determining the shape of the distribution from which
the data have been sampled:
• Histogram describes frequency or relative frequency (i.e.,

ratio) of (usually continuous) data in different ranges.
• Bar chart (or bar graph) describes frequency or relative

frequency of data among discrete categories.

• For continuous data:
• Histogram corresponds to the pdf of a theoretical distribution.
• In terms of the shape, not the exact value!†

• For discrete data:
• Usually use bar chart instead of histogram.
• Bar chart corresponds to the pmf of a theoretical distribution.
• In terms of both the shape and value (if the bar chart uses

relative frequency).

†
The histogram can be scaled to the so-called empirical pdf.
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Identifying Distribution I Histogram

• Histogram’s appearance heavily relies on how one partition
the range of the data into intervals.

• Intervals are too narrow: the histogram will be ragged (i.e.,
not smooth).

• Intervals are too wide: the histogram will be coarse, or blocky,
and its shape and other details will not show well.

0 20 40 60 80

0

10

20

30

0

20

40

60

0

2

4

6

8

10

(a)

0 20 40 60 80

(b)

0 20 40 60 80

(c)

0 20 40 60 80

0

10

20

30

0

20

40

60

0

2

4

6

8

10

(a)

0 20 40 60 80

(b)

0 20 40 60 80

(c)

0 20 40 60 80

0

10

20

30

0

20

40

60

0

2

4

6

8

10

(a)

0 20 40 60 80

(b)

0 20 40 60 80

(c)

Figure: Ragged, Appropriate and Coarse Histograms (from Banks et al. (2010) )

• Choosing the number of intervals approximately equal to the
square root of the sample size often works well in practice
( Hines et al. 2002 ).
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Distribution Fitting

• After a family of distributions has been selected, the next step
is to determine the parameters of the distribution that can
“best” fit the data.
• Called distribution fitting, or parameter estimation.

• There are many different approaches and we discuss two
simple ones:
• method of moments (MoM)
• maximum likelihood estimation (MLE)
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Distribution Fitting I Method of Moments

• For a random variable X, its kth moment is defined as E[Xk].

• Let X1, . . . ,Xn be a random sample of X. The kth sample
moment is defined as

mk :=
Xk

1 + · · ·+Xk
n

n
.

• Suppose the considered distribution family has s unknown
parameters.

1 Analytically compute E[X1], . . . , E[Xs], as functions of those
parameters.
– Note: the moments of common distributions are well-known.

2 Compute m1, . . . ,ms from the data.

3 Solve E[Xk] = mk, k = 1, . . . , s, for s unknown parameters.
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Distribution Fitting I Method of Moments

• Example 1: Suppose X1, . . . ,Xn are iid from Gamma(α,λ)
(in shape & rate parametrization).
• Recall: f(x) = λα

Γ(α)x
α−1e−λx, E[X] = α/λ, Var(X) = α/λ2.

Estimate α and λ using MoM.

Solution. The first two moments are

E[X] = α/λ = m1,

E[X2] = Var(X) + (E[X])2 = (α+ α2)/λ2 = m2.

Solving two equations yields MoM estimators

α̂ =
m2

1

m2 −m2
1

, λ̂ =
m1

m2 −m2
1

. �
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Distribution Fitting I Method of Moments

• Example 2: Suppose X1, . . . ,Xn are iid from Exp(λ).
Estimate λ using MoM.

Solution. The first moment is

E[X] = 1/λ = m1.

So the MoM estimator of λ is λ̂ = 1
m1

= n
X1+···+Xn . �
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Distribution Fitting I Method of Moments

• Example 3: Suppose X1, . . . ,Xn are iid from N (µ,σ2).
Estimate µ and σ2 using MoM.

Solution. The first two moments are

E[X] = µ = m1,

E[X2] = Var(X) + (E[X])2 = σ2 + µ2 = m2.

Solving two equations yields MoM estimators

µ̂ = m1, σ̂2 = m2 −m2
1. �

• Remark: µ̂ =
∑n

i=1Xi

n , and

σ̂2 =
X2

1 + · · ·+X2
n

n
− X̄2 =

∑n
i=1X

2
i − nX̄2

n

=

∑n
i=1(Xi − X̄)2

n
. (why?)
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Distribution Fitting I A Simple Variation of MoM

• Many common distributions have no more than 2 parameters:
Ber(p), B(n, p), NB(r, p), Geo(p), Pois(λ), Unif[a, b], Exp(λ),

Erl(k,λ), Gamma(α,λ), Beta(α,β), Weibull(α,β), N (µ,σ2), tp,

χ2
p.

• Instead of using MoM, another convenient way to estimate the
parameters is using sample mean X̄ and sample variance S2:

X̄ =

∑n
i=1Xi

n
= m1,

S2 =

∑n
i=1(Xi − X̄)2

n− 1
=

∑n
i=1X

2
i − nX̄2

n− 1
=

n

n− 1
(m2 −m2

1),

to solve E[X] = X̄, and Var(X) = S2 (if necessary).

• Note 1: Purpose of n− 1 in S2 is to ensure E[S2] = Var(X).

• Note 2: In original MoM, we solve Var(X) = m2 −m2
1.
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Distribution Fitting I A Simple Variation of MoM

• Revisit Example 1: Gamma(α,λ).

Recall: using MoM, α̂ =
m2

1

m2−m2
1

, λ̂ = m1

m2−m2
1

.

Solving E[X] = α/λ = X̄ and Var(X) = α/λ2 = S2, yields

λ̃ =
X̄

S2
, α̃ = X̄λ̃ =

X̄2

S2
. �

Note: α̃ = n−1
n

m2
1

m2−m2
1

= n−1
n α̂, λ̃ = n−1

n
m1

m2−m2
1

= n−1
n λ̂.

• Revisit Example 2: Exp(λ). No difference.

• Revisit Example 3: N (µ,σ2).

Recall: µ̂ = m1 = X̄, σ̂2 = m2 −m2
1 =

∑n
i=1(Xi−X̄)2

n .

Letting E[X] = X̄ and Var(X) = S2, we have

µ̃ = X̄, σ̃2 = S2 =

∑n
i=1(Xi − X̄)2

n− 1
. �
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Distribution Fitting I Maximum Likelihood Estimation

• MoM is often “quick and dirty” and is not using all the
information contained within the data efficiently.

• Maximum Likelihood Estimation (MLE), by contrast, is
known to be as efficient as possible.

• MLE says that the parameters should take values under which
the observed data are mostly likely to occur.

• Sometimes, both MoM and MLE yield the same estimator.
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• MLE says that the parameters should take values under which
the observed data are mostly likely to occur.

• Sometimes, both MoM and MLE yield the same estimator.
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Distribution Fitting I Maximum Likelihood Estimation

• Revisit Example 2: Suppose x1, . . . ,xn are iid observations
from Exp(λ). Estimate λ using MLE.

Solution. The pdf is f(x) = λe−λx, x ≥ 0, λ > 0. So the
likelihood of observing the above data is

L(λ) :=
n∏
i=1

f(xi) = λne−λ(x1+···+xn).

We want to solve λ that maximizes L(λ). To make it easier, we
consider to maximize the log likelihood, which is equivalent:

ln(L(λ)) = n ln(λ)− λ(x1 + · · ·+ xn).

Taking its derivative w.r.t. λ and setting it to zero gives the solution

λ∗ = n
x1+···+xn . (Check it is indeed the global maximizer!) �

• Remarks:
• If X1, . . . ,Xn haven’t been observed, λ∗ = n/(X1 + · · ·+Xn).
• The estimator is the same as in MoM.
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Distribution Fitting I Maximum Likelihood Estimation

• Revisit Example 1: Suppose x1, . . . ,xn are iid observations
from Gamma(α,λ). Estimate α and λ using MLE.

Solution. The pdf is f(x) = λα

Γ(α)x
α−1e−λx, x > 0, α > 0,λ > 0.

So the log likelihood of observing the above data is

ln(L(α,λ)) =
n∑
i=1

ln(f(xi))

= n[α ln(λ)− ln(Γ(α))] + (α− 1)

n∑
i=1

ln(xi)− λ
n∑
i=1

xi.

To maximize ln(L(α,λ)), notice that for any value of α, the global

maximizer of λ is that satisfying ∂ ln(L(α,λ))
∂λ = nα/λ−

∑n
i=1 xi = 0,

which is λ∗(α) = α/x̄. (Check this!)

Then we need to find α is that maximizes ln(L(α,λ∗(α))).

Unfortunately, this can only be done numerically. �

• For discrete distributions, replace the pdf with pmf.
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Goodness of Fit

• After a family of distributions has been selected and the
parameters are determined to “best” fit the data, the next
step is to evaluate how good the fitting is.

• If the goodness of fit is not good, select another candidate and
repeat the previous processes, or use an empirical distribution.

• There are two types of approaches:
• Graphical methods: histogram against fitted pdf/pmf,

quantile-quantile (Q-Q) plot, etc.
• Statistical tests: chi-square (χ2) test, Kolmogorov-Smirnov

(K-S) test, etc.

• Try more than one plot/test before making conclusion.
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Goodness of Fit I Graphical Methods

• Compare the shape of histogram or bar chart of data
against the fitted pdf or pmf.

• For better comparison, one may consider to aline the
histogram/bar chart and pdf/pmf:
• Use relative frequency (i.e., ratio) for bar chart.
• For histogram, one may consider to re-scale the vertical axis of

histogram or pdf to make them aligned.
• Commercial softwares usually take care of that by default.
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Figure: Example of Scaled Histogram vs. Fitted pdf
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Goodness of Fit I Graphical Methods

• Quantile-Quantile (Q-Q) plot compares the quantiles of the
data against those of the fitted distribution.

• The q-quantile of X is that value γ such that P(X ≤ γ)
= F (γ) = q, for 0 < q < 1. When F (x) has an inverse, we
can write γ = F−1(q).
• Median: 50% quantile.
• In financial risk management, quantile of the profit-and-loss of

a portfolio is also called Value-at-Risk (VaR).
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Goodness of Fit I Graphical Methods

• To make Q-Q plots, given the data {x1, . . . ,xn} and the
fitted distribution with CDF F (x):
• Order the observations from the smallest to the largest, and

rename them as y1 ≤ y2 ≤ · · · ≤ yn.

• yj is an estimate of the (j − 0.5)/n quantile of X which
generates the data.

• For X ∼ F (x), its (j − 0.5)/n quantile is F−1
(
j−0.5
n

)
.

• Q-Q plot displays y1, ... , yn vs. F−1
(

1−0.5
n

)
, ... ,F−1

(
n−0.5
n

)
.

• If the data is indeed generated from distribution F (x), then

yj ≈ F−1
(j − 0.5

n

)
,

so the plot will be approximately a straight line with slop 1.
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• yj is an estimate of the (j − 0.5)/n quantile of X which
generates the data.

• For X ∼ F (x), its (j − 0.5)/n quantile is F−1
(
j−0.5
n

)
.

• Q-Q plot displays y1, ... , yn vs. F−1
(

1−0.5
n

)
, ... ,F−1

(
n−0.5
n

)
.

• If the data is indeed generated from distribution F (x), then

yj ≈ F−1
(j − 0.5

n

)
,

so the plot will be approximately a straight line with slop 1.
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Figure: Examples of Q-Q Plot (from ZHANG Xiaowei )

• The observed values will never fall exactly on a straight line

• The ordered values are not independent because they are ranked.
Hence, if one point lies above the line, it is likely that the next one
will too.

• The values at the extremes have a much higher variance than those
in the middle. So greater discrepancies can be acceptable at the
extremes; linearity in the middle is much more important.
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Goodness of Fit I Statistical Tests

• Graphical methods qualitatively measure the fitting goodness
of a certain distribution with CDF F (x) to the data.

• Goodness-of-fit tests are statistical hypothesis tests that
quantitatively measure the fitting goodness.
• Whether or not the observations x1, . . . ,xn are an independent

sample from a certain distribution with CDF F (x)?

• A hypothesis test is a data-based rule to decide between the
null hypothesis (H0) and the alternative hypothesis (H1).
• The basic idea is to assume H0 is true, and then check if the

data provide enough evidence to conclude that H0 is not true.
• If yes, we reject H0; otherwise, we fail to reject H0.

Truth
Decision

reject H0
fail to

reject H0

H0 is true type I error correct
H1 is true correct type II error
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Goodness of Fit I Statistical Tests

• A hypothesis test only directly controls the type I error.
• A test with the same type I error probability but smaller type II

error probability is better (more powerful).
• The level of significance (显著水平), α, means that
P(type I error) ≤ α.

• The test statistic (检验统计量) is a statistic computed from
the data.

• The p-value is the probability that we would observe the
same value of the computed test statistic or an even more
extreme value, given H0 is true.

• We will reject H0 if
• p-value is smaller than some specified α, or, equivalently,
• the computed test statistic falls in certain range (called

rejection region), which is determined by α.
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Goodness of Fit I Statistical Tests

• For goodness-of-fit tests, the basic question is, “is it
reasonable, statistically speaking, to assume that the
observations x1, . . . ,xn are an independent sample from the
specified distribution?”

• H0: The data come from the specified distribution
H1: The data do not come from the specified distribution

• Logic: Assume H0 is true, is it likely to observe the data at
hand?
• If the likelihood is very small (i.e., p-value is very small), then
H0 is unlikely to be true (reject H0);

• otherwise, there is no enough evidence to reject H0 (fail to
reject H0).

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 37 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Goodness of Fit I Statistical Tests

• For goodness-of-fit tests, the basic question is, “is it
reasonable, statistically speaking, to assume that the
observations x1, . . . ,xn are an independent sample from the
specified distribution?”

• H0: The data come from the specified distribution
H1: The data do not come from the specified distribution

• Logic: Assume H0 is true, is it likely to observe the data at
hand?
• If the likelihood is very small (i.e., p-value is very small), then
H0 is unlikely to be true (reject H0);

• otherwise, there is no enough evidence to reject H0 (fail to
reject H0).

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 37 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Goodness of Fit I Statistical Tests

• For goodness-of-fit tests, the basic question is, “is it
reasonable, statistically speaking, to assume that the
observations x1, . . . ,xn are an independent sample from the
specified distribution?”

• H0: The data come from the specified distribution
H1: The data do not come from the specified distribution

• Logic: Assume H0 is true, is it likely to observe the data at
hand?

• If the likelihood is very small (i.e., p-value is very small), then
H0 is unlikely to be true (reject H0);

• otherwise, there is no enough evidence to reject H0 (fail to
reject H0).

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 37 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Goodness of Fit I Statistical Tests

• For goodness-of-fit tests, the basic question is, “is it
reasonable, statistically speaking, to assume that the
observations x1, . . . ,xn are an independent sample from the
specified distribution?”

• H0: The data come from the specified distribution
H1: The data do not come from the specified distribution

• Logic: Assume H0 is true, is it likely to observe the data at
hand?
• If the likelihood is very small (i.e., p-value is very small), then
H0 is unlikely to be true (reject H0);

• otherwise, there is no enough evidence to reject H0 (fail to
reject H0).

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 37 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Goodness of Fit I Statistical Tests

• The chi-square test (χ2 test, 卡方检验) is a more formal
comparison of a histogram with the fitted pdf f(x) or pmf
p(x).

• The procedure of chi-square test:
1 First divide the entire range of the fitted distribution into k

adjacent intervals, [a0, a1), [a1, a2), . . . , [ak−1, ak).

2 Define

Oi := actual number of data points in [ai−1, ai),

Ei := expected number of points in [ai−1, ai) for fitted dist.

= n× P(ai−1 ≤ X < ai)

= n
∫ ai
ai−1

f(x)dx or n
∑
ai−1≤xj<ai p(xj).

3 Compute the test statistic R :=
∑k
i=1

(Oi−Ei)2
Ei

.

4 Reject H0 if R is too large.
– Reason: A large value of R indicates a poor fit, whereas a small value
indicates a good fit.
– Question: How large is too large? (i.e., what is the rejection region?)

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 38 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Goodness of Fit I Statistical Tests

• The chi-square test (χ2 test, 卡方检验) is a more formal
comparison of a histogram with the fitted pdf f(x) or pmf
p(x).

• The procedure of chi-square test:
1 First divide the entire range of the fitted distribution into k

adjacent intervals, [a0, a1), [a1, a2), . . . , [ak−1, ak).

2 Define

Oi := actual number of data points in [ai−1, ai),

Ei := expected number of points in [ai−1, ai) for fitted dist.

= n× P(ai−1 ≤ X < ai)

= n
∫ ai
ai−1

f(x)dx or n
∑
ai−1≤xj<ai p(xj).

3 Compute the test statistic R :=
∑k
i=1

(Oi−Ei)2
Ei

.

4 Reject H0 if R is too large.
– Reason: A large value of R indicates a poor fit, whereas a small value
indicates a good fit.
– Question: How large is too large? (i.e., what is the rejection region?)

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 38 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Goodness of Fit I Statistical Tests

• The chi-square test (χ2 test, 卡方检验) is a more formal
comparison of a histogram with the fitted pdf f(x) or pmf
p(x).

• The procedure of chi-square test:
1 First divide the entire range of the fitted distribution into k

adjacent intervals, [a0, a1), [a1, a2), . . . , [ak−1, ak).

2 Define

Oi := actual number of data points in [ai−1, ai),

Ei := expected number of points in [ai−1, ai) for fitted dist.

= n× P(ai−1 ≤ X < ai)

= n
∫ ai
ai−1

f(x)dx or n
∑
ai−1≤xj<ai p(xj).

3 Compute the test statistic R :=
∑k
i=1

(Oi−Ei)2
Ei

.

4 Reject H0 if R is too large.
– Reason: A large value of R indicates a poor fit, whereas a small value
indicates a good fit.
– Question: How large is too large? (i.e., what is the rejection region?)

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 38 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Goodness of Fit I Statistical Tests

• The chi-square test (χ2 test, 卡方检验) is a more formal
comparison of a histogram with the fitted pdf f(x) or pmf
p(x).

• The procedure of chi-square test:
1 First divide the entire range of the fitted distribution into k

adjacent intervals, [a0, a1), [a1, a2), . . . , [ak−1, ak).

2 Define

Oi := actual number of data points in [ai−1, ai),

Ei := expected number of points in [ai−1, ai) for fitted dist.

= n× P(ai−1 ≤ X < ai)

= n
∫ ai
ai−1

f(x)dx or n
∑
ai−1≤xj<ai p(xj).

3 Compute the test statistic R :=
∑k
i=1

(Oi−Ei)2
Ei

.

4 Reject H0 if R is too large.
– Reason: A large value of R indicates a poor fit, whereas a small value
indicates a good fit.
– Question: How large is too large? (i.e., what is the rejection region?)

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 38 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Goodness of Fit I Statistical Tests

• The chi-square test (χ2 test, 卡方检验) is a more formal
comparison of a histogram with the fitted pdf f(x) or pmf
p(x).

• The procedure of chi-square test:
1 First divide the entire range of the fitted distribution into k

adjacent intervals, [a0, a1), [a1, a2), . . . , [ak−1, ak).

2 Define

Oi := actual number of data points in [ai−1, ai),

Ei := expected number of points in [ai−1, ai) for fitted dist.

= n× P(ai−1 ≤ X < ai)

= n
∫ ai
ai−1

f(x)dx or n
∑
ai−1≤xj<ai p(xj).

3 Compute the test statistic R :=
∑k
i=1

(Oi−Ei)2
Ei

.

4 Reject H0 if R is too large.
– Reason: A large value of R indicates a poor fit, whereas a small value
indicates a good fit.
– Question: How large is too large? (i.e., what is the rejection region?)

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 38 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Goodness of Fit I Statistical Tests

• View the test statistic R as a random variable.
• Since we assume the collected data is one observed random

sample from some unknown distribution, if we conduct the
study multiple times, the values of the statistics will be
different because the collected data will be different.

• For current data at hand, we have already observed the value
of R, which is denoted as r.

• So, the p-value for this hypothesis test is P(R ≥ r).

• For the fitted distribution, suppose s ≥ 0 parameters are
unknown and estimated via MLE.

• If H0 is true, then R approximately follows the chi-square
distribution with k − s− 1 degrees of freedom (i.e., χ2

k−s−1
distribution) when sample size n is large.
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Goodness of Fit I Statistical Tests

• If no parameter is estimated for the fitted distribution in any
way:

• Given H0 is true, R
d−→ X, as n→∞, where X ∼ χ2

k−1.

• If s ≥ 1 parameters are unknown and estimated via MLE for
the fitted distribution:
• Given H0 is true, R

d−→ X, as n→∞, where the CDF of X
lies between those of χ2

k−1 and χ2
k−s−1.

1
 

1 � �

0
�2

k � 1, 1 � ��2
k � s � 1, 1 � �

x

Asymptotic CDF of R
 if H0 is true

Fk � s � 1(x)

Fk � 1(x)
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Goodness of Fit I Statistical Tests

• The p-value = P(R ≥ r) =
∫∞
r f(x)dx, where f(x) is the pdf

of χ2
k−s−1 distribution.

• If we have selected some significance level α (i.e., we want to
control P(type I error) below α), then we will reject H0 if
• p-value < α, or, equivalently,
• r > χ2

k−s−1, 1−α, where χ2
k−s−1, 1−α is the (1− α)-quantile of

χ2
k−s−1 distribution (as shown in the following figure).
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Goodness of Fit I Statistical Tests

• Advantage of chi-square test:
• It can be applied to any hypothesized distribution, which

makes it widely used.

• Disadvantage of chi-square test:
• It is valid only in an asymptotic sense (large n).
• Major drawback: The validity and power of chi-square test

are affected by the number and size of the chosen intervals,
while there is no clear prescription for such selection.

• In the absence of a definitive guideline for choosing the
intervals, it’s usually recommended to make Ei equal (or
approximately equal) and no less than 5, for all intervals.
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Goodness of Fit I Statistical Tests

• The Kolmogorov-Smirnov test (K-S test, 柯尔莫哥洛夫–

斯米尔诺夫检验) formally compares the empirical CDF Fn(x)
with the CDF of the hypothesized distribution, F (x).

Empiric
Hypothe

al CDF
  sized CDF

D = max
i=1,...,n

{( i
n
− F (xi)

)∨(
F (xi)−

i− 1

n

)}
.

Note: x1, . . . ,xn are the sorted
data points.

• The test statistic is D := supx |Fn(x)− F (x)|.
• D is the largest deviation between the empirical CDF and the

hypothesized CDF.
• Since the empirical CDF is a step function, to compute D, it

suffices to evaluate |Fn(x)− F (x)| only at the “jump” points.
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Goodness of Fit I Statistical Tests

• The procedure of K-S test:
1 Compute the test statistic D.
2 Reject H0 if D is too large.

– Reason: A large value of D indicates a poor fit, whereas a small value
indicates a good fit.

• For current data at hand, we have already observed the value
of D, which is denoted as d. Reject H0 if
• p-value = P(D ≥ d) < α, or equivalently,
• d > dn, 1−α, where dn, 1−α is the (1− α)-quantile of D.
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Goodness of Fit I Statistical Tests

• Unfortunately, the distribution of D (thus the dn, 1−α and
p-value) is more complicated than in χ2 test.

• If no parameter of F (x) is estimated in any way:
• Given H0 is true and F (x) is continuous, the distribution of D

does not depend on F (x).
• Numerical tables and accurate approximation are available.

• If F (x) is CDF of distribution such as normal, exponential, or
Weibull, and parameters are estimated via MLE (except for
normal σ2, which is estimated by S2):
• Given H0 is true, the distribution of D depends on F (x), and

it is complicated.
• Approximations and numerical tables are available.
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Goodness of Fit I Statistical Tests

• Advantage of K-S test:
• It does not require us to group the data in any way, so no

information is lost and no troublesome selection is faced.
• It is valid (exactly) for any sample size, whereas chi-square test

is valid only in an asymptotic sense.
• It tends to be more powerful than chi-square test.

• Disadvantage of K-S test:
• Its range of applicability is more limited than that for

chi-square test.
• When applicable, its computation of p-value and rejection

region is usually complicated.

• K-S test is relatively more convenient to be used in a case
where the hypothesized distribution is continuous and no
parameter is estimated. For example:
• Test random number generators.
• Test a Poisson process (more details later).
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Goodness of Fit I Remarks

• Comments on p-value:
• p-value can be viewed as a measure of fit: a large p-value tends

to indicate a good fit, while a small p-value suggests a poor fit.

• We could try several families of distributions and select the one
with the largest p-value.

• However, p-value is just a summary measure. It says little or
nothing about where the lack of fit occurs (body? left tail?
right tail?).

• Different statistical tests may give different p-values.

• Whether or not you reject H0 also depends on the significance
level α chosen by yourself.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 47 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Goodness of Fit I Remarks

• Comments on p-value:
• p-value can be viewed as a measure of fit: a large p-value tends

to indicate a good fit, while a small p-value suggests a poor fit.

• We could try several families of distributions and select the one
with the largest p-value.

• However, p-value is just a summary measure. It says little or
nothing about where the lack of fit occurs (body? left tail?
right tail?).

• Different statistical tests may give different p-values.

• Whether or not you reject H0 also depends on the significance
level α chosen by yourself.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 47 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Goodness of Fit I Remarks

• Comments on p-value:
• p-value can be viewed as a measure of fit: a large p-value tends

to indicate a good fit, while a small p-value suggests a poor fit.

• We could try several families of distributions and select the one
with the largest p-value.

• However, p-value is just a summary measure. It says little or
nothing about where the lack of fit occurs (body? left tail?
right tail?).

• Different statistical tests may give different p-values.

• Whether or not you reject H0 also depends on the significance
level α chosen by yourself.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 47 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Goodness of Fit I Remarks

• Comments on general goodness-of-fit tests:
• If very little data are available, then a goodness-of-fit test is

unlikely to reject any candidate distribution.
– No enough evidence to reject H0.

• If a lot of data are available, then a goodness-of-fit test is
likely to reject all candidate distributions.
– H0 is virtually never exactly true, and even a tiny departure from the
hypothesized distribution will be detected for large n.

• Do not have blind faith in goodness-of-fit tests!
– Failing to reject a candidate distribution should be taken as only one
piece of evidence in favor of that choice.
– Rejecting a candidate distribution should be taken as only one piece of
evidence against the choice.
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Goodness of Fit I Remarks

• Graphical Methods vs. Statistical Tests
• Graphical methods qualitatively measure the fitting goodness,

while statistical tests quantitatively measure the fitting
goodness.

• Statistical tests measure the lack of fit by summary statistics,
while graphical methods show where the lack of fit occurs
(body, left tail, right tail) and allow users to decide whether it
is important.

• Statistical tests may accept the fit, but plots may suggest
otherwise, especially when the number of observations is small.

• Always combine statistical test results with graphical analysis.

• When no model fits the data satisfactorily, we may end up
with the empirical distribution.
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Goodness of Fit I Remarks

• Many softwares do have a “best fit” option (or button).
• It recommends the “best” distribution in its library based on

summary measure like the p-value (and perhaps other factors
such as discrete or continuous, bounded or unbounded).

• Always keep the following in mind when using such an option:
• The software might know nothing about the physical basis of

the data.

• Automated best-fit procedures tend to choose the more flexible
distributions (gamma over Erlang, Weibull over exponential).

• But, close conformance to the data does not always lead to
the most appropriate input model (overfitting).

• The limitation of summary measure like p-value.

• View the automated distribution selection as one suggestion,
inspect it using graphical methods, and remember that the
final choice is yours.
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Goodness of Fit I Remarks

• All the graphical methods and statistical tests can be used to
check the uniformity of a random number generator (RNG).

1 Generate a sequences of numbers (as many as you want) using
the RNG.

2 Check if Unif(0, 1) fits the data well enough.

• Poisson-Process Test
• Suppose we observe an arrival process for a time interval [0,T ],

where T is a constant decided before we start our observation.

• We see n arrivals during [0,T ] with arrival times s1, s2, . . . , sn,
and want to check if Poisson process is a good model for it.

• Method 1: Test if an exponential distribution can fit the data
{s1, s2 − s1, . . . , sn − sn−1} well.

• Method 2: Test if Unif(0,T ) can fit the data {s1, . . . , sn}
well. (Why?)
– Given N(T ) = n, the n arrival times S1, . . . ,Sn have the same
distribution as n independent RVs from Unif(0,T ) that are sorted.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 51 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Goodness of Fit I Remarks

• All the graphical methods and statistical tests can be used to
check the uniformity of a random number generator (RNG).

1 Generate a sequences of numbers (as many as you want) using
the RNG.

2 Check if Unif(0, 1) fits the data well enough.

• Poisson-Process Test
• Suppose we observe an arrival process for a time interval [0,T ],

where T is a constant decided before we start our observation.

• We see n arrivals during [0,T ] with arrival times s1, s2, . . . , sn,
and want to check if Poisson process is a good model for it.

• Method 1: Test if an exponential distribution can fit the data
{s1, s2 − s1, . . . , sn − sn−1} well.

• Method 2: Test if Unif(0,T ) can fit the data {s1, . . . , sn}
well. (Why?)
– Given N(T ) = n, the n arrival times S1, . . . ,Sn have the same
distribution as n independent RVs from Unif(0,T ) that are sorted.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 51 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Goodness of Fit I Remarks

• All the graphical methods and statistical tests can be used to
check the uniformity of a random number generator (RNG).

1 Generate a sequences of numbers (as many as you want) using
the RNG.

2 Check if Unif(0, 1) fits the data well enough.

• Poisson-Process Test
• Suppose we observe an arrival process for a time interval [0,T ],

where T is a constant decided before we start our observation.

• We see n arrivals during [0,T ] with arrival times s1, s2, . . . , sn,
and want to check if Poisson process is a good model for it.

• Method 1: Test if an exponential distribution can fit the data
{s1, s2 − s1, . . . , sn − sn−1} well.

• Method 2: Test if Unif(0,T ) can fit the data {s1, . . . , sn}
well. (Why?)
– Given N(T ) = n, the n arrival times S1, . . . ,Sn have the same
distribution as n independent RVs from Unif(0,T ) that are sorted.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 51 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Goodness of Fit I Remarks

• All the graphical methods and statistical tests can be used to
check the uniformity of a random number generator (RNG).

1 Generate a sequences of numbers (as many as you want) using
the RNG.

2 Check if Unif(0, 1) fits the data well enough.

• Poisson-Process Test
• Suppose we observe an arrival process for a time interval [0,T ],

where T is a constant decided before we start our observation.

• We see n arrivals during [0,T ] with arrival times s1, s2, . . . , sn,
and want to check if Poisson process is a good model for it.

• Method 1: Test if an exponential distribution can fit the data
{s1, s2 − s1, . . . , sn − sn−1} well.

• Method 2: Test if Unif(0,T ) can fit the data {s1, . . . , sn}
well. (Why?)

– Given N(T ) = n, the n arrival times S1, . . . ,Sn have the same
distribution as n independent RVs from Unif(0,T ) that are sorted.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 51 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Goodness of Fit I Remarks

• All the graphical methods and statistical tests can be used to
check the uniformity of a random number generator (RNG).

1 Generate a sequences of numbers (as many as you want) using
the RNG.

2 Check if Unif(0, 1) fits the data well enough.

• Poisson-Process Test
• Suppose we observe an arrival process for a time interval [0,T ],

where T is a constant decided before we start our observation.

• We see n arrivals during [0,T ] with arrival times s1, s2, . . . , sn,
and want to check if Poisson process is a good model for it.

• Method 1: Test if an exponential distribution can fit the data
{s1, s2 − s1, . . . , sn − sn−1} well.

• Method 2: Test if Unif(0,T ) can fit the data {s1, . . . , sn}
well. (Why?)
– Given N(T ) = n, the n arrival times S1, . . . ,Sn have the same
distribution as n independent RVs from Unif(0,T ) that are sorted.

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 51 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


1 Introduction

2 Data Collection

3 Identifying Distribution
I Physical Basis of Distributions
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An Illustrative Example

• Suppose we want to build a statistical model for the life time
(i.e., time to failure) of a electronic component at 1.5 times
the nominal voltage.

1 Data Collection.
• Perform life tests on a random sample (n = 50) of electronic

components and record their lifetime, in days:

79.919 3.081 0.062 1.961 5.845
3.027 6.505 0.021 0.013 0.123
6.769 59.899 1.192 34.760 5.009

18.387 0.141 43.565 24.420 0.433
144.695 2.663 17.967 0.091 9.003

0.941 0.878 3.371 2.157 7.579
0.624 5.380 3.148 7.078 23.960
0.590 1.928 0.300 0.002 0.543
7.004 31.764 1.005 1.147 0.219
3.217 14.382 1.008 2.336 4.562
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An Illustrative Example

2 Identifying Distribution.
• Lifetime, although recorded to three-decimal-place accuracy, is

a positive continuous variable.

• For this life time, naturally, exponential and Weibull are
considered.

• Plot the histogram.
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• We decide to first try exponential distribution family Exp(λ).
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An Illustrative Example

3 Distribution Fitting.
• Recall Example 2, MoM (or its variation) and MLE yield the

same estimator for λ, which is λ̂ = n
X1+···+Xn .

• Plug the data in, and the estimate of λ is 0.084.

4 Goodness of Fit.
• Scaled histogram vs. pdf of Exp(0.084).

0 50 100 150
0

0.02

0.04

0.06

0.08

0 50 100 150
0

0.02

0.04

0.06

0.08

0 50 100 150
0

0.02

0.04

0.06

0.08

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 55 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


An Illustrative Example

3 Distribution Fitting.
• Recall Example 2, MoM (or its variation) and MLE yield the

same estimator for λ, which is λ̂ = n
X1+···+Xn .

• Plug the data in, and the estimate of λ is 0.084.

4 Goodness of Fit.
• Scaled histogram vs. pdf of Exp(0.084).

0 50 100 150
0

0.02

0.04

0.06

0.08

0 50 100 150
0

0.02

0.04

0.06

0.08

0 50 100 150
0

0.02

0.04

0.06

0.08

SHEN Haihui MEM6810 Modeling and Simulation, Lec 5 Spring 2023 (full-time) 55 / 57

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


An Illustrative Example

4 Goodness of Fit.
• Q-Q plot.
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An Illustrative Example

4 Goodness of Fit.
• Chi-square test (H0: The data come from Exp(0.084)).

Number of estimated parameters is s = 1.

Choose intervals (make Ei equal).

Class Observed Frequency Expected Frequency
Interval Oi Ei

(Oi − Ei)
2

Ei

[0, 1.590) 19 6.25 26.01
[1.590, 3.425) 10 6.25 2.25
[3.425, 5.595) 3 6.25 0.81
[5.595, 8.252) 6 6.25 0.01
[8.252, 11.677) 1 6.25 4.41
[11.677, 16.503) 1 6.25 4.41
[16.503, 24.755) 4 6.25 0.81
[24.755, ∞) 6 6.25 0.01

50 50 39.6

Number of intervals is k = 8.

Compute test statistic r =
∑k
i=1

(Oi−Ei)2
Ei

= 39.6.

Note that R ∼ χ2
k−s−1 distribution = χ2

6 distribution.

So, p-value = P(R ≥ r) = P(R ≥ 39.6) = 5× 10−7.

Hence, at almost any practical level of significance, e.g.,
α = 0.05, α = 0.01, we will reject H0.
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